Due today: QUIZ (absent make-ups)

Due tomorrow:

* Geometry standards review \#20-30

Due Wednesday:
*14.1 part 1
\#17-20, 21-35odd
(put on a new sheet of paper...more problems will be added tomorrow!)

Notes: 14.1 (part 1)

Fundamental Counting Principle:

If event 1 can occur m different ways and event 2 can occur n different ways (after the first has occurred), then the two events can occur $m \bullet n$ ways.
\rightarrow use a "decision chart" to compute your answer!

APPLICATIONS

17-36■ Fundamental Counting Principle These exercises involve the Fundamental Counting Principle.
-17. Ice-Cream Cones A vendor sells ice cream from a cart on the boardwalk. He offers vanilla, chocolate, strawberry, and pistachio ice cream, served in either a waffle, sugar, or plain cone. How many different single-scoop tice-cream cones can you buy from this vendor?

18. Three-Letter Words How many three-letter "words" (strings of letters) can be formed by using the 26 letters of the alphabet if repetition of letters
(a) is allowed? $26 \cdot 2626=26^{3}=17,576$
(b) is not allowed?

$$
26 \cdot 25 \cdot 24=15,600
$$

19. Horse Race Eight horses compete in a race. (Assume that the race does not end in a tie.)
(a) How many different orders are possible for completing the race? $8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=8!\quad 40,320$
(b) In how many different ways can first, second, and third places be decided?

$$
\frac{8}{14 t} \cdot \frac{7}{2^{n d}} \cdot \frac{6}{3^{r d}}=336
$$

20. Multiple-Choice Test A multiple-choice test has five questions with four choices for each question. In how many ifferent ways can the test be comp
$=1024$

$$
\underset{1}{\text { question }} 2345
$$

Circle Facts

A circle is a two-dimensional shape made of points that are all the same distance from the center.

Circumference $=\mathbf{2 \pi r}$ Diameter $=\mathbf{2 r}$ Area $=\pi r^{2}$

Diameter is distance from one side of circle to the other, going through the center

MIDPOINT
 $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

The midpoint is halfway between two endpoints.

$$
\begin{aligned}
M=(2,3) \\
(1,2) \\
\left(x_{1}, y_{1}\right)
\end{aligned} \quad=\left(\frac{1+3}{2}, \frac{2+4}{2}\right)
$$

DISTANCE
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Using Pythagoras' Theorem this formula is distance between two endpoints.

Find the length of the diagonal of this rectangle

$$
\begin{aligned}
& A C^{2}=A D^{2}+C D^{2} \\
& A C^{2}=5^{2}+12^{2} \\
& A C^{2}=25+144 \\
& A C^{2}=169
\end{aligned}
$$

Parallelogram

Check answers for geometry review:

$$
\begin{array}{lll}
\text { 20. B } & \text { 24. B } & \text { 28. B } \\
\text { 21. A } & \text { 25. C } & \text { 29. D } \\
\text { 22. C } & \text { 26. B } & \text { 30. A } \\
\text { 23. C } & \text { 27. C } &
\end{array}
$$

*Be sure to show work and/or sketch diagrams to prove your answer is correct!

